

HuaweiCrawler

This is the documentation of HuaweiCrawler.

From the root of the project, run:

python setup.py --version

Read the Docs, run:

python setup.py doctest

python setup.py docs

Unit test, run:

python setup.py test

PyPI upload, run setup.py:

1. Commit -> Git - tag - add - v0.0.1 -> ``setup.py`` -> push
2. Github - Release - new release v0.0.1

python setup.py sdist bdist_wheel
twine upload dist/*

Note

This is the main page of your project’s Sphinx [http://www.sphinx-doc.org/] documentation.
It is formatted in reStructuredText [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html]. Add additional pages
by creating rst-files in docs and adding them to the toctree [http://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html] below.
Use then references [http://www.sphinx-doc.org/en/stable/markup/inline.html] in order to link them from this page, e.g.
Contributors and Changelog.

It is also possible to refer to the documentation of other Python packages
with the Python domain syntax [http://sphinx-doc.org/domains.html#the-python-domain]. By default you can reference the
documentation of Sphinx [http://www.sphinx-doc.org/], Python [http://docs.python.org/], NumPy [http://docs.scipy.org/doc/numpy], SciPy [http://docs.scipy.org/doc/scipy/reference/], matplotlib [https://matplotlib.org/contents.html#],
Pandas [http://pandas.pydata.org/pandas-docs/stable], Scikit-Learn [http://scikit-learn.org/stable]. You can add more by extending the
intersphinx_mapping in your Sphinx’s conf.py.

The pretty useful extension autodoc [http://www.sphinx-doc.org/en/stable/ext/autodoc.html] is activated by default and lets
you include documentation from docstrings. Docstrings can be written in
Google style [https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings] (recommended!), NumPy style [https://numpydoc.readthedocs.io/en/latest/format.html] and classical style [http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists].

Contents

	License

	Authors

	Contributing
	Code of Conduct

	Rights

	Issue Conventions

	Design Principles

	Dataset Objects

	Git Conventions

	Code Conventions

	Development Environment
	Initial Setup

	Installing GDAL

	Python build requirements

	Installing Rasterio

	Running the tests

	Changelog
	Version 0.1

	Module Reference
	HuaweiCrawler package
	Subpackages
	HuaweiCrawler.core package

	Submodules

	HuaweiCrawler.skeleton module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

	You must give any other recipients of the Work or
Derivative Works a copy of this License; and

	You must cause any modified files to carry prominent notices
stating that You changed the files; and

	You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

	If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets “[]”
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same “printed page” as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Contributors

	Quan Pan <quanpan302@hotmail.com>

Contributing

Welcome to the Rasterio project. Here’s how we work.

Code of Conduct

First of all: the Rasterio project has a code of conduct. Please read the
CODE_OF_CONDUCT.txt file, it’s important to all of us.

Rights

The BSD license (see LICENSE.txt) applies to all contributions.

Issue Conventions

The Rasterio issue tracker is for actionable issues.

Questions about installation, distribution, and usage should be taken to
the project’s general discussion group [https://rasterio.groups.io/g/main]. Opened issues which fall into one
of these three categories may be perfunctorily closed.

Questions about development of Rasterio, brainstorming, requests for comment,
and not-yet-actionable proposals are welcome in the project’s
developers discussion group [https://rasterio.groups.io/g/dev]. Issues
opened in Rasterio’s GitHub repo which haven’t been socialized there may be
perfunctorily closed.

Rasterio is a relatively new project and highly active. We have bugs, both
known and unknown.

Please search existing issues, open and closed, before creating a new one.

Rasterio employs C extension modules, so bug reports very often hinge on the
following details:

	Operating system type and version (Windows? Ubuntu 12.04? 14.04?)

	The version and source of Rasterio (PyPI, Anaconda, or somewhere else?)

	The version and source of GDAL (UbuntuGIS? Homebrew?)

Please provide these details as well as tracebacks and relevant logs. When
using the $ rio CLI logging can be enabled with $ rio -v and verbosity
can be increased with -vvv. Short scripts and datasets demonstrating the
issue are especially helpful!

Design Principles

Rasterio’s API is different from GDAL’s API and this is intentional.

	Rasterio is a library for reading and writing raster datasets. Rasterio uses
GDAL but is not a “Python binding for GDAL.”

	Rasterio always prefers Python’s built-in protocols and types or Numpy
protocols and types over concepts from GDAL’s data model.

	Rasterio keeps I/O separate from other operations. rasterio.open() is
the only library function that operates on filenames and URIs.
dataset.read(), dataset.write(), and their mask counterparts are
the methods that perform I/O.

	Rasterio methods and functions should be free of side-effects and hidden
inputs. This is challenging in practice because GDAL embraces global
variables.

Dataset Objects

Our term for the kind of object that allows read and write access to raster data
is dataset object. A dataset object might be an instance of DatasetReader
or DatasetWriter. The canonical way to create a dataset object is by using the
rasterio.open() function.

This is analogous to Python’s use of
file object [https://docs.python.org/3/glossary.html#term-file-object].

Git Conventions

We use a variant of centralized workflow described in the Git Book [https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows]. We
have no 1.0 release for Rasterio yet and we are tagging and releasing from the
master branch. Our post-1.0 workflow is to be decided.

Work on features in a new branch of the mapbox/rasterio repo or in a branch on
a fork. Create a GitHub pull request [https://help.github.com/articles/using-pull-requests/] when the changes are
ready for review. We recommend creating a pull request as early as possible
to give other developers a heads up and to provide an opportunity for valuable
early feedback.

Code Conventions

The rasterio namespace contains both Python and C extension modules. All
C extension modules are written using Cython [http://cython.org/]. The
Cython language is a superset of Python. Cython files end with .pyx and
.pxd and are where we keep all the code that calls GDAL’s C functions.

Rasterio supports Python 2 and Python 3 in the same code base, which is
aided by an internal compatibility module named compat.py. It functions
similarly to the more widely known six [https://pythonhosted.org/six/] but
we only use a small portion of the features so it eliminates a dependency.

We strongly prefer code adhering to PEP8 [https://www.python.org/dev/peps/pep-0008/].

Tests are mandatory for new features. We use pytest [https://pytest.org].

We aspire to 100% coverage for Python modules but coverage of the Cython code is
a future aspiration (#515 [https://github.com/mapbox/rasterio/issues/515]).

Development Environment

Developing Rasterio requires Python 2.7 or any final release after and
including 3.4. We prefer developing with the most recent version of Python
but recognize this is not possible for all contributors. A C compiler is also
required to leverage existing protocols [https://docs.python.org/3.5/extending/extending.html] for extending Python
with C or C++. See the Windows install instructions in the readme for more information about building on Windows.

Initial Setup

First, clone Rasterio’s git repo:

$ git clone https://github.com/mapbox/rasterio

Development should occur within a virtual environment [http://docs.python-guide.org/en/latest/dev/virtualenvs/] to better isolate
development work from custom environments.

In some cases installing a library with an accompanying executable inside a
virtual environment causes the shell to initially look outside the environment
for the executable. If this occurs try deactivating and reactivating the
environment.

Installing GDAL

The GDAL library and its headers are required to build Rasterio. We do not
have currently have guidance for any platforms other than Linux and OS X.

On Linux, GDAL and its headers should be available through your distro’s
package manager. For Ubuntu the commands are:

$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update
$ sudo apt-get install gdal-bin libgdal-dev

On OS X, Homebrew is a reliable way to get GDAL.

$ brew install gdal

Python build requirements

Provision a virtualenv with Rasterio’s build requirements. Rasterio’s
setup.py script will not run unless Cython and Numpy are installed, so do
this first from the Rasterio repo directory.

Linux users may need to install some additional Numpy dependencies:

$ sudo apt-get install libatlas-dev libatlas-base-dev gfortran

then:

$ pip install -U pip
$ pip install -r requirements-dev.txt

Installing Rasterio

Rasterio, its Cython extensions, normal dependencies, and dev dependencies can
be installed with $ pip. Installing Rasterio in editable mode while
developing is very convenient but only affects the Python files. Specifying the
[test] extra in the command below tells $ pip to also install
Rasterio’s dev dependencies.

$ pip install -e .[test]

Any time a Cython (.pyx or .pxd) file is edited the extension modules
need to be recompiled, which is most easily achieved with:

$ pip install -e .

When switching between Python versions the extension modules must be recompiled,
which can be forced with $ touch rasterio/*.pyx and then re-installing with
the command above. If this is not done an error claiming that an object has
the wrong size, try recompiling is raised.

The dependencies required to build the docs can be installed with:

$ pip install -e .[docs]

Running the tests

Rasterio’s tests live in tests <tests/> and generally match the main
package layout.

To run the entire suite and the code coverage report:

$ py.test --cov rasterio --cov-report term-missing

A single test file:

$ py.test tests/test_band.py

A single test:

$ py.test tests/test_band.py::test_band

Changelog

Version 0.1

	Feature A added

	FIX: nasty bug #1729 fixed

	add your changes here!

HuaweiCrawler

	HuaweiCrawler package
	Subpackages
	HuaweiCrawler.core package
	Submodules

	HuaweiCrawler.core.core module

	Module contents

	Submodules

	HuaweiCrawler.skeleton module

	Module contents

HuaweiCrawler package

Subpackages

	HuaweiCrawler.core package
	Submodules

	HuaweiCrawler.core.core module

	Module contents

Submodules

HuaweiCrawler.skeleton module

This is a skeleton file that can serve as a starting point for a Python
console script. To run this script uncomment the following lines in the
[options.entry_points] section in setup.cfg:

	console_scripts =

	fibonacci = HuaweiCrawler.skeleton:run

Then run python setup.py install which will install the command fibonacci
inside your current environment.
Besides console scripts, the header (i.e. until _logger…) of this file can
also be used as HuaweiCrawler for Python modules.

Note: This skeleton file can be safely removed if not needed!

	
HuaweiCrawler.skeleton.fib(n)

	Fibonacci example function

	Parameters

	n (int [https://docs.python.org/3.7/library/functions.html#int]) – integer

	Returns

	n-th Fibonacci number

	Return type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
HuaweiCrawler.skeleton.main(args)

	Main entry point allowing external calls

	Parameters

	args ([str [https://docs.python.org/3.7/library/stdtypes.html#str]]) – command line parameter list

	
HuaweiCrawler.skeleton.parse_args(args)

	Parse command line parameters

	Parameters

	args ([str [https://docs.python.org/3.7/library/stdtypes.html#str]]) – command line parameters as list of strings

	Returns

	command line parameters namespace

	Return type

	argparse.Namespace [https://docs.python.org/3.7/library/argparse.html#argparse.Namespace]

	
HuaweiCrawler.skeleton.run()

	Entry point for console_scripts

	
HuaweiCrawler.skeleton.setup_logging(loglevel)

	Setup basic logging

	Parameters

	loglevel (int [https://docs.python.org/3.7/library/functions.html#int]) – minimum loglevel for emitting messages

Module contents

HuaweiCrawler

HuaweiCrawler.core package

Submodules

HuaweiCrawler.core.core module

core

	example

	In the Docker Image quanpan302/huawei-crawler:

scrapy startproject tutorial

scrapy runspider /notebooks/src/HuaweiCrawler/core/core.py -o mobile.csv -t csv

	
class HuaweiCrawler.core.core.TmobileSpider(name=None, **kwargs)

	Bases: scrapy.spiders.Spider

	
fieldnames = ['url', 'name']

	

	
file_name = <_io.TextIOWrapper name='tmobile_spider.csv' mode='w' encoding='UTF-8'>

	

	
name = 'tmobile_spider'

	

	
parse(response)

	

	
parse_detail(response)

	

	
start_urls = ['https://www.t-mobile.nl/shop/alle-telefoons?ch=es&cc=con&sc=acq']

	

	
writer = <csv.DictWriter object>

	

Module contents

core

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 HuaweiCrawler	

 	
 	
 HuaweiCrawler.core	

 	
 	
 HuaweiCrawler.core.core	

 	
 	
 HuaweiCrawler.skeleton	

Index

 F
 | H
 | M
 | N
 | P
 | R
 | S
 | T
 | W

F

 	
 	fib() (in module HuaweiCrawler.skeleton)

 	
 	fieldnames (HuaweiCrawler.core.core.TmobileSpider attribute)

 	file_name (HuaweiCrawler.core.core.TmobileSpider attribute)

H

 	
 	HuaweiCrawler (module)

 	HuaweiCrawler.core (module)

 	
 	HuaweiCrawler.core.core (module)

 	HuaweiCrawler.skeleton (module)

M

 	
 	main() (in module HuaweiCrawler.skeleton)

N

 	
 	name (HuaweiCrawler.core.core.TmobileSpider attribute)

P

 	
 	parse() (HuaweiCrawler.core.core.TmobileSpider method)

 	
 	parse_args() (in module HuaweiCrawler.skeleton)

 	parse_detail() (HuaweiCrawler.core.core.TmobileSpider method)

R

 	
 	run() (in module HuaweiCrawler.skeleton)

S

 	
 	setup_logging() (in module HuaweiCrawler.skeleton)

 	
 	start_urls (HuaweiCrawler.core.core.TmobileSpider attribute)

T

 	
 	TmobileSpider (class in HuaweiCrawler.core.core)

W

 	
 	writer (HuaweiCrawler.core.core.TmobileSpider attribute)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 HuaweiCrawler

 		
 License

 		
 Authors

 		
 Contributing

 		
 Code of Conduct

 		
 Rights

 		
 Issue Conventions

 		
 Design Principles

 		
 Dataset Objects

 		
 Git Conventions

 		
 Code Conventions

 		
 Development Environment

 		
 Initial Setup

 		
 Installing GDAL

 		
 Python build requirements

 		
 Installing Rasterio

 		
 Running the tests

 		
 Changelog

 		
 Version 0.1

 		
 Module Reference

 		
 HuaweiCrawler package

 		
 Subpackages

 		
 Submodules

 		
 HuaweiCrawler.skeleton module

 		
 Module contents

